Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334358

RESUMO

BACKGROUND: The influences of deacetylated konjac glucomannan (DKGM) at different condition levels (0.0%, 0.5%, 1.0%, 1.5%, 2.0%) on the 3D printing feasibility, printing properties, and the final gel characteristics of minced pork were investigated. RESULTS: As the DKGM content increased, the printing accuracy and stability initially increased and then declined, and the printing stability and accuracy increased to their highest levels (98.16% and 98.85%) with a 1.5% addition of DKGM. Furthermore, the addition of DKGM significantly enhanced the texture of 3D-printed meat after heat treatments. When the DKGM content reached 1.5%, the hardness and springiness were 1.19 and 1.06 times higher than those of the control group. The results of low-field nuclear magnetic resonance and Raman spectra revealed that DKGM enhanced the amount of bound water in 3D-printed meat and encouraged changes in protein structure. After the addition of DKGM at 1.5%, the contents of bound water and ß-sheets were 7.67% and 12.89% higher than those of the control group, respectively, facilitating the development of a better gel network of minced meat during heating. CONCLUSION: The results indicate that a concentration of 1.5% DKGM is the ideal setting for obtaining the desired rheological properties and textural characteristics (printability) of 3D-printed minced meat products compared to other samples. In addition, the results showed that the addition of DKGM at 1.5% promotes the transition from α-helix to ß-folding of proteins during heating, which facilitates the formation of gels. The results of the study contribute to the application potential of minced meat in the field of 3D food printing. © 2024 Society of Chemical Industry.

2.
Foods ; 12(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37761160

RESUMO

The sorting and processing of food raw materials is an important step in the food production process, and the quality of the sorting operation can directly or indirectly affect the quality of the product. In order to improve production efficiency and reduce damage to food raw materials, some food production enterprises currently use robots for sorting operations of food raw materials. In the process of robot grasping, some food raw materials such as fruits, vegetables and meat have a soft appearance, complex and changeable shape, and are easily damaged by the robot gripper. Therefore, higher requirements have been put forward for robot grippers, and the research and development of robot grippers that can reduce damage to food raw materials and ensure stable grasping has been a major focus. In addition, in order to grasp food raw materials with various shapes and sizes with low damage, a variety of sensors and control strategies are required. Based on this, this paper summarizes the low damage grasp principle and characteristics of electric grippers, pneumatic grippers, vacuum grippers and magnetic grippers used in automated sorting production lines of fruit, vegetable and meat products, as well as gripper design methods to reduce grasp damage. Then, a grasping control strategy based on visual sensors and tactile sensors was introduced. Finally, the challenges and potential future trends faced by food robot grippers were summarized.

3.
Foods ; 12(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37444335

RESUMO

In this study, the effect of chickpea dietary fiber (CDF) concentration (0%, 0.4%, 0.8%, 1.2%, 1.6%, and 2.0%) on emulsion gel properties of myofibrillar protein (MP) was investigated. It was found that the emulsifying activity index (EAI) and emulsifying stability index (ESI) of MP increased with the increasing content of CDF. Moreover, the water- and fat-binding capacity (WFB), gel strength, storage modulus (G'), and loss modulus (G") of MP emulsion gel also increased with increasing content of CDF. When the concentration of CDF was 2%, the most significant improvement was observed for EAI, breaking force, and WFB (p < 0.05); the three-dimensional gel network structure of the MP emulsion gel was denser and the pore diameter was smaller. The T21 relaxation time of emulsion gel decreased while the PT21 increased significantly with the increasing content of CDF, suggesting that the emulsion gel with CDF had a better three-dimension network. The addition of CDF led to an increased content of ß-sheet and reactive sulfhydryl and increased surface hydrophobicity of MP, thus improving the gel properties of the MP emulsion gel. In conclusion, the addition of CDF improved the functional properties and facilitated the gelation of the MP emulsion, indicating that CDF has the potential to improve the quality of emulsified meat products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...